
Abstract
Complex temporal and spatial patterns of gene expression specificy
morphology and tissue identity. To fully understand pattern formation, we
need to characterize the expression of large number of genes during
development in three-dimensions with cellular resolution. To make such
datasets useful, gene expression patterns must be quantitative and reduced
to a computable form. The Berkeley Drosophila Transcription Network
Project is developing a set methods to do this. Our goal is to build an
expression atlas that will record the expression of 1,000 genes in wild type
pregastrula embryos and up to 200 genes in a series of mutant embryos,
each mutant for one of 34 early acting transcription factor.

We have adapted fluorescent in situ hybridization protocols for this purpose.
Stained and mounted blastoderm embryos are imaged whole by multiphoton
confocal microscopy. One fluorescent channel is reserved for a DNA-stain to
detect nuclei; the other two channels contain different gene expression
patterns detected with tyramide-reactions. The confocal image stacks are
then analyzed to yield a 3D computer representation of gene expression
around each nucleus (posters 358A Luengo Hendriks et al., 350B
Fowlkes et al.).

There are many ways to look such data. In this poster, we introduce some
computational methods for analysing gene expression using numerical
pointcloud data on eve, ftz, kni, rho, and sna mRNA expression patterns in a
set of stage 5 embryos. The examples here show that it is possible to
connect abstract numerical data on gene expression with biological events.
Eventually, we hope to be able to use similar approaches for mining
regulatory information from unknown patterns in a high through-put manner.

From expression patterns to numerical data sets
To collect data on gene expression, fluorescently triple-stained blastoderm embryos (sytox green for DNA and Cy3 and coumarin-tyramides for two mRNAs) are
staged according to the percentage of cell membrane development and imaged in confocal microscope to record the 3D expression patterns as image stacks
(Figure 1). The images are converted into text-files of local expression levels that are readable to various data analysis scripts and programming languages (see

poster 358A Luengo Hendriks et al.). This allows flexible data sharing, such as mapping expression data into a virtual embryo (see posters 350B Fowlkes et al.,

374B Weber et al.), as well as more abstract analyses of multiple expression features (Figure 2). The versatility of numerical data means that the direction of
research depends on mathematical tools chosen by the researcher.

Future prospects
Our initial goal is to map in depth the expression
patterns of 34 early developmental regulatory
transcription factors, on which the biology is well
known. This data will be used for:

• Generating a first pass regulatory network for
blastoderm pattern formation to guide the high
through-put analysis of ~1000-1500 genes

• Further development of novel tools and approaches
for mining 3D expression data

Examples of non-spatial methods to be developed further:

* Exploration on the spatiotemporal dynamics of total co-
   expression data and associating different dynamics with
   different known regulatory interactions

* Development of statistical tests to detect and discriminate
  between subtle patterns

 Examples of spatial methods to be developed further:

* More methods for finding and describing of intensity peaks in
  3D data sets

* Using spatial data to limit the number of pairwise gene
   and/or domain comparisons

Please see other BDTNP posters for further methodology
and other forms of pattern analyses

Figure 1
A pseudocolor volume-rendered and thresholded image of a D. melanogaster
blastoderm embryo triple-stained for ftz mRNA (red), sna mRNA (green) and DNA
(white) (for details, see also poster 374B Weber et al.).

While visual information is intuitively fast to comprehend, computational methods
allow quantification of the various patterning features for more critical analyses.

Taking a first peek at numerical data sets
The expression intensities in this poster are normalized from 1 - 100, with 1% top and
bottom intensity nuclei set into 1 or 100. As seen below, the distribution of intensities can
vary between the genes and developmental stages. This tells what fraction of cells
express the gene and at what level. Since the amount of computation often increases
exponentially with the size of the data set, such primary intensity profiles might be useful
for dividing unknown expression patterns into smaller cohorts to speed up further
regulatory analyses.
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Figure 2    Averaged intensity profiles of four genes at five different stages of blastoderm embryos
(early 0-2% cell wall invagination, early 5-7%, early 10-25%, mid 50-70%, and late 90+% cell wall
invagination; n = 4-17). In eve and ftz the intensity differences between cells become sharper as the
pattern evolves, whereas in rho they decrease and in sna the profiles stay quite similar. Such changes
might reflect, e.g., overall sharpening or diffusion of the pattern borders (development of binary vs
graded expression patterns) or generic up- or downregulation of gene expression.

Table 1     Beginning of a pointcloud file. Each row contains nucleus id, its
X,Y,Z-co-ordinates, nuclear and cytoplasmic volumes, the average intensity of
the DNA stain in the nucleus (sytox), and the average intensities of the two RNA-
stains for apical cytoplasm (a), basal cytoplasm (b), nucleus (n), and the whole
region (g). The number of lines below the header lines equals to the number of
segmented objects (for details, see poster 358A Luengo Hendriks et al.)
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Figure 3      Distribution of minimum distance from an expressing to the
nearest non-expressing cell and vice versa in one embryo stained for ftz and
sna. At intensity cut-off 30 (≥ 30 expression, < 30 no expression), most of the
minimum distances from ftz to non-expressing are short, reflecting the pattern
that consists of narrow stripes, whereas many of the sna expressing cells are
within a large band of cells. While the left histogram reflects the shape of the
expression pattern, the minimum distances from non-expressing to nearest
expressing cell in the right histogram reflect the spatial spread of the pattern,
in this case 7 round stripes for ftz and one ventral band for sna (for picture of
the expression, see Figure 1).

Quantifying the spatial information
in the patterns
Each pointcloud has data complexity equivalent to that of a microarray.
However, pointcloud dataset contains spatial information that can be
analyzed at various resolutions, data not available from methods using
summed total expression such as microarray data. Simple analyses on
spatial features can be used to support and verify the results of more
complex spatial analyses later. For example, calculating the
distribution of minimum distances from expressing to non-expressing
cells and the inverse is one way to generate 1st pass quantitative
measures on spatial characteristics of expression patterns.

    id      x      y        z      Nx      Ny      Nz   Da   Db    Vn    Vc Sytox Cy3_n Cy3_a Cy3_b  Cy3_g Cou_n Cou_a Cou_b Cou_g
0 0.45 0.45 1.5 0.45 0.45 1.5 1 1 0.304 0.304 0.071 0.074 0.079 0.095 0.079 0.069 0.076 0.271 0.088

## Using MAKEPOINTCLOUD of 25 February 2005.
1009 202.8 183.1 76.68 -0.08 0.938 -0.34 0 0 330.3 871.3 84.04 64.96 39.57 39.99 49.63 52.15 57.76 65.92 57.33
2018 336.1 121.2 165.1 0.336 0.223 0.915 0 0 263.2 660.3 38.7 34.33 16.69 29.17 27.02 14.47 12.09 37.06 15.26
3027 118.2 123.6 169.3 -0.24 0.324 0.916 0 0 154.2 884.4 32.26 30.72 19.55 29.39 24.09 5.275 5.246 25.44 7.203
4036 320.7 37.24 86.3 0.248 -0.93 -0.29 0 0 276.6 626.9 84.54 65.55 37.41 38.57 50.99 14.52 17.23 45 18.52

1 296.7 34 124.9 0.144 -0.94 0.312 0 0 819.1 1834 72.75 57.06 21.53 36.32 41.17 34.51 38.7 46.57 37.9
1010 126.6 163.8 83.28 -0.36 0.871 -0.33 0 0 559.5 1521 73.06 55.02 35.4 35.44 42.37 28.07 35.7 55.05 32.73
2019 164.6 145.1 44.55 -0.26 0.502 -0.83 0 0 208.3 778.4 69.62 55.12 40.79 37.75 42.69 22.29 27.55 54.72 26.55
3028 130.9 167.8 85.74 -0.37 0.876 -0.31 0 0 230.1 625.7 72.91 55.81 37.54 36.73 44.29 24.13 35.16 50.07 32.09
4037 250.1 149.6 38.53 0.063 0.569 -0.82 0 0 250.2 773.3 73.23 64.15 48.57 44.74 51.63 12.65 11.58 47.8 15.03
5046 194 156.6 162.5 -0.09 0.671 0.736 0 0 151.2 417.4 39.32 36.6 22.04 29.29 28.96 9.733 11.33 31.14 12.03

2 255.6 171.6 59.02 0.073 0.796 -0.6 0 0 510.9 1445 78.29 65.85 46.97 43.62 51.64 11.8 11.4 48.98 14.87
1011 365.8 99.71 60.26 0.485 -0.08 -0.87 0 0 226.8 547.1 80.77 62.98 40.35 40.46 49.59 11.9 11.15 45.31 14.47
2020 243.6 40.92 58.34 0.064 -0.81 -0.58 0 0 240.1 535.8 85.99 73.87 45.07 45.6 59.07 48.04 56.77 59.51 55.71
3029 266.2 123.3 29.85 0.131 0.186 -0.97 0 0 301.2 953 73.54 62.13 37.7 42.84 46.24 33.79 32.75 64.58 34.72
4038 164.6 143.5 169.1 -0.2 0.541 0.817 0 0 196.1 623.6 33.25 36.52 22.08 30.46 28.57 5.819 5.336 26.18 7.41
5047 208.8 51.67 160.3 -0.01 -0.72 0.692 0 0 301.8 791.2 46.63 40.02 16.4 32.87 31.19 6.299 3.95 29.19 8.058

3 186.9 158.1 159.9 -0.09 0.678 0.73 0 0 378.6 1203 38.59 39 23.65 34.53 31.34 20.99 25.48 40.95 22.44
1012 357.9 152.1 127.9 0.474 0.821 0.319 0 0 397.7 839.7 70.62 55.27 24.58 33.02 41.77 8.694 7.315 37.7 10.87
2021 334.1 126.3 165.1 0.33 0.307 0.893 0 0 304.5 793.3 38.62 34.5 16.8 30.09 26.99 22.84 23.14 43.41 24.04
3030 388.5 136.2 98.19 0.66 0.713 -0.24 0 0 261.7 639.4 90.4 83.98 65.09 52.85 69.93 10.63 9.24 42.13 12.7
4039 368.6 111.8 63.53 0.512 0.143 -0.85 0 0 261.1 694.9 73.5 59.18 41.76 44.63 48.03 12.02 11.59 45.07 14.7

4 273.6 138.4 35.78 0.189 0.381 -0.9 0 0 294.5 796.6 74.94 61.45 41.55 40.93 48.4 32.02 34.33 59.65 34.52
1013 94.87 58.14 75.34 -0.29 -0.7 -0.65 0 0 196.7 533.7 73.21 53.64 36.01 37.26 42.43 11.08 12.61 45.18 14.54

a                                               b                                               c

Measuring the expression patterns domain
by domain…

Figure 4.     The average percentage of the cells in a stripe compared to the total number of
cells at three different stages of blastoderm cellularization. Left eve, right ftz.

The individual elements of the patterns are easily seen by visual inspection of an
image, but extracting them from numerical datasets can be more problematic.
Because different expression domains may be controlled by different regulatory
modules, spatial subdivisions of the expression data are still essential for dissecting
the developmental regulatory network. Smoothing the data and then isolating the
areas with sharp intensity jumps (1/x cell/neighbor) allows automated identification of
isolated expression domains with minimal user input.

For example, eve and ftz are easily seen as having seven stripes at blastoderm stage
(as in Figure 6). However, computational analysis of the individual stripes shows that
on average, different stripes can contain different numbers of cells, and that the
temporal profiles of the stripes can be different, even though they belong to the same
gene. Moreover, though both eve and ftz are pair-rule genes, the profiles of their
stripe patterns are different (Figure 4).
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Average class distribution for six nearest
neighbors for a class of cells

Figure 5.    Bar graphs showing the average frequency at which 6 nearest neighbors
for a cell expressing a gene also express the same gene. The frequency at which all 6
nearest neighbors (6 exp.) express the gene drops in ftz, eve and kni, but not in sna.

Plotting the fractions of expressing cells by  different numbers of neighbors that
belong to the same expression class (0/6-6/6) is another method for measuring
shape information. The fraction of cells surrounded by only gene expression (6/6)
decreases as the relative border length in the pattern increases. This tells how
clumped the expression is (e.g. thin ftz stripes vs broad sna band), and how this
pattern shape feature evolves during development (e.g. decrease of 6/6 in later
eve, ftz, and kni patterns).
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Strong and/or consistent positive and/or negative correlations may be identified by binning
the normalized co-expression intensities and then calculating the difference between obs-
erved and expected frequencies of nuclei in each co-expression bin (Figure 6). However,
more complex analyses based on domain-by-domain comparisons are probably required
for discovering specific interactions, since, e.g., summing the all different overlap profiles of
individual domains can mask local patterning detail between genes (for example, Figure 7).

Degree of co-expression cell-by-cell

e+f  e    f     -          e+f   e   f    -             e+f  e    f    -
obs 405 1123 1512 3617  117 1786 1904 2213      53 1585 1703 2285
exp 440 1088 1477 3652  639 1264 1382 2734     511 1127 1245 2743
diff. -35   35   35  -35        -522  522  522 -522          -458  458  458 -458

Figure 6. Three embryos (a early 0, b early 25, c mid 65) stained for eve mRNA (red), ftz
mRNA (blue) and DNA (green). Below are shown the observed and expected frequencies of total
cells expressing eve+ftz, eve, ftz, or neither in a smoothed pointcloud data set when all the cells in
embryo are considered. When the stripes grow narrower, eve+ftz overlap reduces.

           kni total vs ftz total     kni total, ftz stripe 4
                k+f  k    f   -           k+f   k     f     -

                               obs      170 946 1755 3178      166   950   130  4803
                               exp      355 761 1570 3363       55  1061   241  4692
                               diff.   -185 185  185 -185         111  -111  -111   111

Figure 7.       An embryo (mid 50) stained for kni mRNA (red), ftz mRNA (blue) and DNA
(green) has in toto fewer co-expressing cells in a smoothed pointcloud data set than random
expectation (when the total distribution of expressing cells all around the embryo is independent of
rules for distribution of other gene expressing cells), but locally, the posterior domain of kni
expression overlaps with ftz stripe 4 (red arrow) showing up as higher than expected co-
expression frequencies.


